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The electrical resistivity p and Seebeck coefficient S have been measured between 10 and 1000°K in 
Ce3_a;S4 with values of x ranging from 0 to 0.30. The electrical behavior is semimetallic and can be fitted, 
in large measure, to the equations of conventional transport theory for S(T) and p(T). However, examina
tion of the electrostatic effects of the vacancies shows that they introduce large effective charges which are 
poorly screened. Consequently, there are wide fluctuations in potential in the crystal which cast doubt 
on a literal interpretation of the theoretical equations; at present, they must be regarded as providing a 
largely empirical description of the experimental results. There is a relatively large residual resistivity 
which indicates a very large cross section per vacancy in samples with small values of x. This can be ac
counted for by the abnormally large screening distance. In the temperature range below 100°K, anomalies 
are observed in S(T) and p{T) in samples with small vacancy concentrations. Anomalies in S(T) seem to 
be caused by phonon drag. The cause of the resistivity anomalies is not yet clear; we consider the possibilities 
that they are caused by local lattice vibrations or by spin scattering by electrons in the 4 / shell of the cerium 
ions. 

I. INTRODUCTION 

THE gamma phase of cerium sulfide, which has a 
cubic TI13P4 structure, has been of some interest 

because of its thermoelectric properties at high tempera
tures.1-3 Its physical makeup, however, differs consider
ably from that of most compounds with well-studied 
electronic behavior. The compound has a wide range of 
stoichiometry, with an ionic defect lattice.4 It can be de
scribed by the formula Ce3-a$4, and in more detail 

Ces-Z+FaS^i-s*1-, 

where the vacancies V are at cerium ion sites and 
0 < # < J. The electrons el~ required to compensate the 
charge have a range of concentration from zero to 
6.25X1021/cnr3- Measurements of magnetic suscepti
bility show that the electrons are not closely associated 
with the cerium ions and must be in a conduction 
band.5-7 In contrast to the usual situation, the perfect 
lattice has many extra electrons in the conduction band. 
Because of this unusual crystal structure, a detailed 
study of its electronic transport behavior is of consider
able interest. 
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In a previous paper,7 we reported a study of cerium 
sulfide which dealt with the nature of the conduction 
band, as inferred mainly from measurements of Seebeck 
coefficient and Hall coefficient at room temperature. 
This work was based on compositions in a semimetallic 
range where n is relatively high; i.e., 6X1020/cm3 to 
6X 1021/cm3. Reasons were discussed which suggest that 
the conduction band arises from the (5d) atomic orbit-
als of the cerium ions. The present paper is concerned 
with a more detailed study of electron transport, using 
samples with electron concentrations in the same range 
as in Ref. 7. The experimental measurements are of the 
electrical resistivity and Seebeck coefficient in the range 
between 10 and 1000°K. (The Hall coefficient was found 
to be independent of temperature and will not be con
sidered to any extent in this paper.) A study of electron 
transport in samples which have a lower range of elec
tron concentrations is reported in Ref. 8; in that study 
a transition toward a type of behavior typical of insu
lators is found. 

Previous workers have obtained general information 
about transport behavior of cerium sulfide, particularly 
at higher temperatures.1-3-9 Detailed analyses of the 
results have been hampered, however, by difficulty in 
determining the correct electron concentration in the 
samples, so that the behavior of electrical conductivity 
and the Seebeck coefficient could not be translated 
readily into information about the mobility and the 
Fermi energy. Experimentally, the problem is mani
fested by a poor correlation between the electrical 
conductivity and other quantities relating to the elec
tron concentration, such as the composition or Hall 
coefficient. 

Above 100°K, the electrical resistivity p and the 
Seebeck coefficient S show a dependence on temperature 
which seems consistent with a simple model for trans-

8 M . Cutler and J. F. Leavy, Phys. Rev. 133, A1153 (1964), 
following paper. 

9 J. Appel and S. W. Kurnick, J. Appl. Phys. 32, 2206 (1961). 
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port. It suggests that there is a combination of thermal 
scattering and impurity scattering; the latter is pre
sumably caused by the high concentration of vacancies. 
The dependence of S on the electron concentration n is 
also consistent with this simple theory. However, the 
dependence of the mobility n on n or on the vacancy 
concentration shows deviations from predictions of 
simple theory, and the scattering cross section of the 
vacancies seems abnormally large. 

On examining the physical situation more carefully, 
we find that an unusual situation exists in that the 
vacancies must repel electrons over a large distance— 
about 5 A. This arises from the fact that vacancies have 
the same sign of charge as the electrons, and the relative 
charge at a vacancy (3e) is much larger than the normal 
electronic charge at equivalent sites (\e), Electrons are 
repelled from a large region near each vacancy in order 
to neutralize its effective charge. As a result, one can 
account in large measure for the large scattering cross 
section of the vacancies. However, the simple interpre
tation suggested by the experimental results disappears, 
and the agreement with the simple model seems largely 
fortuitous. As a result of the relatively large vacancy 
concentration in the experimental range (1 to 10% of 
the cerium ion sites), the physical situation is much 
more complicated than any envisaged in a simple model. 
This is mainly because the regions in which the potential 
is drastically affected by the presence of vacancies con
stitute a large fraction of the total volume, so that elec
trons are generally in regions where potential energy 
fluctuations are comparable to the Fermi energy. None
theless, the equations for the transport parameters 
based on the simple model provide a surprisingly faith
ful description of the transport behavior, although their 
use must be regarded as largely empirical. Therefore, 
reference is made to the simple model in presenting 
experimental results in Sec. II, and comparisons are 
made which are appropriate for developing this empiri
cal description. In Sec. Il l , we discuss the mobility as 
determined from vacancy scattering at low tempera
tures and present a description of the apparent physical 
situation. In Sec. IV, we discuss other aspects of the 
results. 

Measurements made below 100°K show interesting 
deviations in p(T) and S(T) from the pattern estab
lished at higher temperatures. They consist of devia
tions from Matthiessen's rule and an increment in S 
which appears to be casued by phonon drag. These 
effects occur in the low vacancy limit of the range of 
compositions. There does not, at present, seem to be 
sufficient information to determine their origin. We 
discuss some possible interpretations in Sec. IV. 

II. EXPERIMENTAL RESULTS 

A. Resistivity 

The samples of cerium sulfide were prepared and 
characterized as described in Ref. 7. Figure 2 of Ref. 7, 
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FIG. 1. p(T) between 100 and 400°K for samples with different 
values of n (indicated in units of 1021/ cm3). 

which relates the electrical conductivity a- to the electron 
concentration n deduced from density measurements, 
was used in later samples to deduce n from a. In addition 
to the discussion in Ref. 7, Ref. 8 presents further con
siderations used in avoiding spurious results arising from 
the presence of extraneous phases in the samples. 

The resistivity p is a linear function of temperature 
T between 100 and 400°K, as seen in Fig. 1. This type 
of behavior was observed previously in praseodymium 
sulfide, which is believed to be similar to cerium sulfide.10 

The implication is that Matthiessen's rule applies in 
these samples for a combination of scattering by imper
fections (vacancies) in the lattice and by thermal vibra
tions. Our observation, in several samples, that the Hall 
coefficient is constant between 100 and 300°K shows 
that the electron concentration is constant, as expected 
in a semimetal. Since the electron concentrations are 
known, one can calculate the corresponding mobilities 
which combine according to the formula 

l/p=l/px+T/iJLi, (1) 

where JJLX is the mobility associated with scattering by 
vacancies, as determined from the extrapolated resis
tivity curves; \x\jT is the mobility associated with ther
mal scattering. (We will often denote m/T by fiT.) 
Results for px and jm, determined in this way, are plotted 
as a function of n in Fig. 2. 

According to Wilson,11 the thermal mobility can be 
written as 

m/T^Ani^MaWnC-zT-yw, (2) 

where A involves only universal constants, M is the 
atomic weight, a is the interatomic distance, 0 is the 

10 G. Guthrie and R. Cesena, Bull. Am. Phys. Soc. 6, 502 (1961). 
11 A. H. Wilson, The Theory of Metals (Cambridge University 

Press, New York), 2nd ed., p. 264. 
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Debye temperature, and C is the coupling constant.12 

/ is the ratio na/£n, where na is the density of atoms, 
provided that this ratio is greater than unity; otherwise, 
/ = 1. In the experimental range, the maximum value of 
n is approximately wa/4, so that Eq. (2) predicts that 
pi should vary as n~l!z, whereas the experimental results 
shows that m increases with increasing n. 

A theory for impurity scattering would have ixx vary
ing inversely as the vacancy concentration, at least in 
the first approximation. The vacancy concentration Nv 

is related to n by the relation 

Nv=(6.25Xl02l~n)/3. (3) 

The experimental values of \x* are constant in a range 
where the vacancy concentration Nv is increasing by a 
factor of ten. This inconsistency seems to be resolved 
when the resistivity measurements are extended to 
liquid-helium temperatures, with results shown in Fig. 3. 
There are deviations from Matthiessen's rule which are 
most pronounced at large n and small Nv. Using mostly 
measurements of resistivity of samples immersed di
rectly in liquid helium, new values of mobility, denoted 
#o, were obtained which are also plotted in Fig. 2. 

Although no does not increase quite as rapidly as 
1/NV, the dependence seems to be reasonable. However, 
when the magnitude of juo is examined, one finds an 
extraordinarily large value of the scattering cross sec
tion (^10-14cm2), particularly at low Nv (large n). This 
led to a re-examination of the physical situation, de-
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FIG. 2. Thermal mobility coefficient #1, extrapolated residual 
mobility px, and liquid-helium value of residual mobility as a 
function of n. The upper scale is the vacancy concentration Nv. 

12 This is for an atomic lattice. I t is sufficient for our purposes to 
regard M and a as suitably averaged quantities in the present case 
of a diatomic lattice. 
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FIG. 3. p(T) to liquid-helium temperatures for different values 
of n (in units of 1021/cm3). The curve marked Th indicates the 
shape predicted by the Bloch-Gruneisen relation. 

scribed in Sec. I l l , which suggests that the true situa
tion is much more complicated than one would infer 
from the conventional behavior of the experimental 
curves. 

Measurements of resistivity up to temperatures of 
the order of 1000°K, plotted in Fig. 4, exhibit an exten
sion of the low-temperature behavior, except for samples 
with relatively low values of n. For the latter, an up
ward curvature is observed in p(T). In addition, several 
curves show some evidence of a small downward curva
ture at very high temperatures. 

The upward curvature can be explained very well in 
terms of conventional theory. Equation (2) is written 
in a form appropriate for a completely degenerate free 
electron band, in terms of n. A more appropriate pa
rameter is the average energy (22) of the electrons, 
and the equation indicates that the thermal mobility 
w ( = / * i / r ) varies as ^(E1 7 2)"1- At low n and high T, 
degeneracy is incomplete, and the average energy of the 
electrons starts to rise above the Fermi energy Ef (more 
accurately, 3E//5). The average energy is kT in the 
extreme of a nondegenerate system, and the formula 
transform to the usual one for semiconductors with 
lxT^>T~-m. In the experimental intermediate region, one 
would use Fermi-Dirac integrals to find the value of 
(2?/2).13 We calculated a corrected temperature scale 

13 These integrals are discussed in a number of places, including 
Ref. 11. Some very good tables appear in J. S. Blakemore, Semi
conductor Statistics (Pergamon Press, Inc., New York, 1962): a de
scription of their use in the application appears in A. F. Iofle, Semi
conductor Thermoelements and Thermoelectric Cooling (Infosearch 
Ltd., London, 1957), p. 90. 
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FIG. 4. p(T) to 1000°K. The experimental points 0 are on a 
normal temperature scale. The points X are the corresponding 
points on an adjusted tempreature scale based on m*/?n = 3, R—0. 

Theorist.r(£1/2)), with the constant determined by the 
limiting value of £/~1/2 at low temperatures, and found 
that the resistivity fell on a straight line when plotted 
on this adjusted scale, as shown in Fig. 4. The calcula
tions were based on an assumed effective mass m* 
= 3.1m, which is the number obtained from the data for 
the Seebeck coefficient. 

B. Seebeck Coefficient 

According to simple theory for nearly free electrons, 
the Seebeck coefficient S is given by 

S= (TWT/3e)(8?n*/h2)(T/3n)W(l+R), (4) 
where 

R=(dln\s/d\nE)Ef, 

and Xs is the scattering distance.11 In Ref.7, it was shown 
that room temperature values of 5 varied as n~2/3, as 
required by Eq. (4). The dependence of S on T is shown 
in Fig. 5, where S/T is plotted versus n in the range of 
100-400°K. (Cerium sulfide is w-type and we will refer 
only to the absolute value of S. All experimental values 
are corrected for the reference metal to put them on an 
absolute scale.) Except for regions of small T and large 
n, the experimental points lie on horizontal lines, which 
again confirms Eq. (4). The deviations at low T and 
large n, which are probably caused by phonon drag, are 
discussed below. In Fig. 6, the values of S/T, taken 
from the horizontal lines in Fig. 5, are plotted versus n 

on a log-log scale. They fall very well on a line which 
has a theoretical slope of —2/3. 

The effective mass can be calculated if one can deter
mine the value of R. On the surface, the data for p(T) 
would set the value at zero since lattice scattering in 
the domain where n<na/4: [see Eq. (2)~] and impurity 
scattering in metals where the impurity ion is 
strongly screened, both give \s independent of E. 
This was the assumption that was used in Ref. 7, 
and, on that basis, the tentative conclusion was that 
fn*/ni=3.12. The data in Fig. 6, which are some
what more accurate, lead to essentially the same results. 
As a result of the complexity of the actual physical 
situation, however, the true value of ?n* is open to ques
tion; we discuss this in further detail in Sec. IV. 

Extension of the measurements of S to temperatures 
of the order of 1000°K, together with theoretical curves, 
are shown in Fig. 7. The data agree over this wider tem
perature range with theoretical curves based on m*/m 
= 3.1 and R=0, even at lower values of n where there 
are departures from complete degeneracy. [The appro
priate theoretical expressions involving Fermi-Dirac 
integrals were used instead of Eq. (4) in the latter 
region.13]However, even in the latter region, an alternate 
choice of R= 2, m*/m= 1.04, would give almost equally 
good agreement, so that the choice of this particular 
combination of m* and R is not dicatted by the results 
for the Seebeck coefficient. For an empirical description, 
however, the former choice has an element of self-
consistency since it would also describe some of the 
behavior of p(T). 

The measurement of S was extended to temperatures 
below 100°K in order to clarify the anomaly noted in 
Fig. 5. The curves, plotted in Fig. 8, show humps typical 
of phonon drag effects. This effect appears most strongly 
in samples with large n. The accuracy of the data de
creases as one goes below 40 °K since copper-constantan 
thermocouples were used in an apparatus in which the 
temperature gradient in the thermocouple wires could 
could not be carefully controlled. However, the accuracy 

0.3 

S 0.2 

0.1 

-

— 

•• -"I I " 

X" A X X 

X X X ' -

r#—v_y v w 

^ 3 H E 
1 ..,. 1 .. ...... 

• 1 1 

' X • - * - 0 6 0 

—-Yv-$£-Y—Y-y 1 2 5 

w x x 2.98 

— • D—•o 3.98 

— *0—o'^^s ' .SS 

. . I .. I 

~ 

*— 

100 200 300 

T °K 

400 

FIG. 5. S/T between 100 and 400°K, for different 
values of n, in units of 1021/ cm3. 



E L E C T R O N I C T R A N S P O R T I N S E M I M E T A L L I C C e 3 _ * S 4 A1147 

is good enough to show correctly the main features of 
the behavior of S. 

The temperature range in which the peak of the hump 
occurs and the dependence on temperature above the 
peak temperature are both characteristic of phonon drag 
effects.14 At higher temperatures, according to theory the 
increment in Seebeck coefficient due to phonon drag 
varies as 1/T. Thus one should have the equation 

5= C lr+c2 /r (5) 
at temperatures above the one at which the peak occurs. 
The experimental data obey this equation quite well for 
those samples in which the hump is pronounced. Eval
uation of Ci, according to this equation for samples 
with largest n, led to somewhat smaller values of the 
coefficient S/T in Eq. (4). These are plotted as open 
circles in Fig. 6. The disappearance of the phonon drag 
effect at low n is consistent with the fact that the 
vacancy concentration becomes large. Phonon and elec-

7.0 

n(l02 lcm-3) 

FIG. 6. S/T as a function of n. The circles are 
points corrected for phonon drag. 

tron collisions with lattice imperfections prevent phonon 
drag by providing an alternate mechanism to umklapp 
processes for fulfilling the Bloch condition at low 
temperatures. 

III. SCATTERING BY VACANCIES 

The usual theory for the effects of impurities or 
vacancies in metals assumes a strongly shielded ion 
whose effective charge is the excess over the normal 
value at the site. The screening distance rt is given 
approximately by the Thomas-Fermi formula 

rt=lEf/67rne22m (6) 

and has a value of about 1 A for Ce3S4.
15 There are some 

14 D. K. C. MacDonald, Thermoelectricity (John Wiley & Sons, 
Inc., New York, 1962). 

15 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 
1960). 
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FIG. 7. S(T) at high T, for different values of n (in units of 
1021/cm3). Curves are based on theoretical equations for tn*/ni = 3) 
R = 2. 

questions about the effective mass and the use of a 
dielectric constant in Eq. (6), which will be discussed 
later. It has been noted by Friedel that there can be a 
significant deviation from the usual screening formula 
in the case where a negatively charged ion is shielded 
by electrons.16 If one has a positive charge, the high 
field near the impurity causes a high density of screening 
electrons in its immediate vicinity; however, with a 
negative charge, the electron concentration in the high-
field region cannot be reduced below zero. In the case 
of cerium sulfide, one has a large negative point charge 
in a lattice with a low average electron density. Elec
trons are almost entirely excluded over a region con
siderably larger than rh and the screening is provided 
by the remaining positive charge of the lattice ions. 

Consider the perfect lattice in Ce3S4. Each Ce3+ ion 
is surrounded by eight S2~ ions at a distance of 3.0 A, 
and each S2~ ion has six nearest neighbors.3,4 Vacancies 
occur only at cerium sites. Using the standard procedure 
of taking the difference between the charge of the imper
fection and the normal charge, one obtains an effective 

FIG. 8. S(T) at low T, for different values of n (in units of 
1021/cm3). The numerous experimental points are not shown. They 
were all within 1 /xV/deg of the drawn curves. 

16 J. Friedel, Advan. Phys. 3, 446 (1954). 
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charge of 3— for a vacancy. On the other hand, a perfect 
crystal has % of an electron per cerium ion. Since the 
electronic wave function is concentrated near the cerium 
ions, as compared to the sulfur ion, one can assume that 
one obtains an excess charge of + § for every cerium ion 
site in a region in which electrons are completely ex
cluded. If one assumes that electrons are excluded com
pletely from discrete neighboring ion positions out to a 
distance sufficient to neutralize the effective charge of 
the vacancy, they are excluded from the eight nearest-
neighbors cerium sites which are at an equal distance 
of 4.0 A. There are four next-nearest cerium sites at 
4.81 A which would be the nearest sites beyond the 
region of electron exclusion. If one adopts a continuum 
model for the positive charge, then the radius re of a 
sphere of exclusion, which has a net positive charge of 
+ 3 , will be 4.86 A. This coincides with the result for 
discrete positive charges. 

Of course, electrons would not be completely excluded 
from r<re. If the potential energy at a distance r is 
V(r), then value for the electron concentration at dis
tance r is 

n(r) = (7r/3)[8mV^2]3/2[^/- F(r)]3/2, (7) 

using the Thomas-Fermi approximation. One can obtain 
a solution for V(r) by solving the Poisson equation 

V2V= (4:we2/K)lnp-n(r)2, (8) 

where K is the static dielectric constant, equal to 19.9 

Equations (7) and (8) have no exact analytic solution, 
but two approximate solutions are of interest. 

One approximation is obtained by assuming that 
n(r) = 0 for r<re; i.e., there is complete exclusion of 
electrons from a sphere large enough for the vacancy 
to be balanced by the smeared positive charge density 
np. The solution for this approximation is 

V/Vo=(r/3re)-(l/2)+r*/r*, r<re; 

V/Vo=0} r>re] 

where 
Vo=9e*/Kr6=1.39eV, 

r.= £9/4<impJi*= 4.85 A. 

This approximation tends to be accurate if E/<<CFo. 
The other approximation is based on the assumption 

that F « £ / , so that the term [Ef- V{r)J12 in Eq. (7) 
is expanded to Ef(l—3V/2Ef). This leads to the usual 
expression for a shielded Coulomb potential: 

V/V0=(re/3r)exp(-r/ro), (11) 
where 

r0=rl2Ef/3VoJ* 
= tKEf/6irnpe

2J'2. 

The approximation of Eq. (11) and (12) becomes accu
rate when Ef is equal to or larger than Vo. 

The derivation of Eqs. (11) and (12) is identical with 
that of the usual Thomas-Fermi screening formula 

except that the static dielectric constant was used. This 
is correct for a fixed charge in a polar lattice, to the 
extent that one can assume that the macroscopic static 
dielectric constant is appropriate for the small region 
in question. 

In the case where the conduction band is nearly 
empty, one would divide e2 in the usual screening dis
tance rt of Eq. (6) by the high-frequency dielectric 
constant (6.25 for Ce3S4), and use the effective mass to 
determine Ef. In the present case, where the band is 
about 20% full,7 the questions of the appropriate values 
for the dielectric constant and the mass in the screening 
distance become more ambiguous, assuming even that 
we have the appropriate information about the band 
structure. The questions of the appropriate effective 
mass and dielectric constant for shielding become com
plicated when the energy of plasma oscillations become 
comparable to band and interband energies. These ques
tions, discussed by Pines,17 go much farther than what 
is necessary for our crude model. The significant facts 
in the present case, are that the static dielectric con
stant plays a role, and that in using Eq. (12), the appro
priate values for the mass and the dielectric constant 
are not very well defined. We will use the macroscopic 
static dielectric constant (K= 19) in the following dis
cussions. The conclusions to be drawn do not, how
ever, depend sensitively on the values used for these 
quantities. 

The value of Ef depends on the choice of a value for 
m*. If one uses m^/m— 3.1, then Ef=0A0 eV, and Eqs. 
(9) and (10) provide the better approximation to the 
solution. In this case, V(r) is equal to Ef at ri=3.2 A, 
and V drops to zero at re=4.85 A. The solution is most 
accurate near r=rh and, of course, the correct solution 
for r>re would have a small V(r) which drops off expo
nentially with increasing distance. There are reasons, 
discussed in Sec. IV, to believe that m^/m may be 
appreciably smaller than 3, and it may be closer to 
unity. If m*=m, then Ef= 1.20, and Eqs. (11) and (12) 
are a good approximation to the correct solution, with 
To— 3.8 A. In this case, one finds that the distance rly at 
which V(r) = Eh is equal to 1.29 A. 

The purpose of presenting such detailed results for 
the potential near a vacancy is to have a clear starting 
point in considering the implications for the mobility 
and potential distribution as the vacancy concentration 
Nv in the crystal is increased. These considerations 
necessarily involve increasingly qualitative deductions. 

Two immediate conclusions are noteworthy: 

(1) If the vacancies are not close to each other, the 
electron concentration remote from vacancies is np 

= 6.25Xl021/ari3, rather than the average electron 
concentration n. 

(2) The diameter of the region near the vacancy in 
which the potential is strongly disturbed (~9 A) is 

17 D. Pines, Solid State Physics, edited F. Seitz and D. Turnbull 
(Academic Press Inc., New York, 1955), Vol. 1, p. 367. 
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considerably larger than the de Broglie wavelength of 
an electron (1.75 A). 

The preceding conclusions indicate that the Born 
approximation is not valid. Also, the use of the Thomas-
Fermi expression for n(r) is open to question. In view 
of the many approximations in formulating the expres
sion for F(r), it seems best to examine vacancy scatter
ing by working back from the experimental data to 
calculate the scattering cross section. The appropriate 
expression in the limit of noninteracting vacancies is 

NydCr'CM-0) 

i.8 i.7 1.5 

JU= (n/nP)e/M/NvSv, (13) 

where kf is the wave vector at the Fermi surface corre
sponding to a carrier density %, and Sv is the scattering 
cross section per vacancy.18 The value of the effective 
mass does not enter here. Using the experimental data 
for MO, calculated results, expressed in terms of a scatter
ing radius rs, where Sv=7rr8

2
} are shown in Fig. 9. We 

also show, for reference, the behavior of the mean free 
path Xs; this is calculated from Eq. (13) with the omis
sion of the factor n/np. 

In the limit of small vacancy concentration Nv, where 
the vacancies are far apart, these results can be expected 
to represent the effect of individual vacancies. Figure 9 
also shows the corresponding distance rVi which is the 
radius of the average spherical volume per vacancy. 
We may take data for rv> 7 A, that is, n> 4X 1021/cm3, 
as representing, reasonably well, situations with non-
overlapping vacancy regions. With the exception of the 
point for the lowest Nv with rs=7.6A, the values 
r8«4.4—5.1 A agree roughly with the size of the region 
of strong potential perturbation, so that the vacancies 
would seem to act like hard spheres with rs=re. The 
point at lowest Nv is unreliable by itself. The vacancy 
concentration is very low here, so that the accuracy of 
determination of Nv from density measurements was 
poor. Also, a small contribution in another scattering 
process, such as residual spin scattering not associated 
with vacan< ies, could possibly have a relatively large 
effect on the value of MO. We will discuss possible effects 
of spin scattering in Sec. IV. However, it should be 
pointed out here that if spin scattering occurs, it may 
also have the effect of adding to the scattering cross 
section per vacancy an increment which is an appreci
able fraction of the total. Therefore, the apparent agree
ment of ra with re cannot presently be used to reach a 
definite conclusion about the nature of the scattering 
process. 

One notes in Fig. 9 that rv decreases as Nv increases 
and n decreases. For n<4X1021/cmz

y rv is close to the 
minimum value of 4.75 A and is comparable to TQ or re. 
There is a significant overlap between adjoining vacancy 
regions. As a result, regions in which n(r) is constant 
and equal to np disappear, and most of the electrons are 
continually in regions of large potential perturbations. 

18 We are indebted to Dr. Walter Kohn for this formula, 

FIG. 9. Behavior of scattering radius rs, mean free path X«, and 
VoNv [in units of (cm2/Vsec)(1021/cm8)] as a function of n and 
Nv, as determined from po. rvis the radius of the average spherical 
volume per vacancy. 

It is to be expected that the character of the wave func
tions appropriate for describing transport would be 
drastically altered if the potential fluctuations are com
parable to the Fermi energy. Since these wave functions 
will reflect to some extent an average potential, includ
ing the presence of the vacancies, one can expect the 
cross section per vacancy to diminish. For this region, 
the formula of Eq. (13) is not appropriate. A more 
proper indication of the scattering in the region of 
^<4X 1021/cm3 is the behavior of HQNV, which is plotted 
in Fig. 9. One sees an increase in the quantity by a factor 
of 3 on going to large values of Nv. The decrease at low
est Nv is probably caused by incipient barriers, discussed 
below. 

It seems, then, that the character of the electronic 
transport strongly affected by large potential fluctua
tions which occur in the crystal over most of the experi
mental range (w<4X1021/an3). In the low n range, an 
approximate solution for V(r) of the type obtained in 
Eqs. (11) and (12) would be modified by introducing 
new boundary conditions representing effects of neigh
boring vacancies. In the spirit of the model, one would 
require that dV/dr=0 at r=rv, leading to a situation 
where n is everywhere smaller than np. Analysis of this 
type of problem has been discussed by Friedel.16 

A pertinent aspect of the physical situation at large 
Nv arises from the random positions of the vacancies. 
There will be fluctuations in the distance between 
neighboring vacancies. Also, the minimum value of n(r) 
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on lines between adjoining vacancies will be smaller 
than in other directions. These regions will act as passes 
between regions of lower potentials and can be expected 
to affect the impedance when the average electron con
centration is small enough. This is the situation which 
seems to develop for samples with compositions ap
proaching Ce2S3 which are considered in Ref. 8. As n is 
decreased, the energy of the barrier regions increases 
and first becomes evident from regions of negative slopes 
in p(T) which occur at low temperatures. There is some 
evidence of upturning in p(T) near r=10°K in the 
higher resistivity range of the samples considered in this 
paper, which seems to represent the beginnings of this 
effect. We observe in Fig. 3 a very shallow minimum in 
p(T) for ^=1.42X1021/cm3; and the effect is indicated 
in other samples, for which detailed curves were not 
obtained, by the excess in fix above juo in Fig. 2. This 
probably accounts for the decrease in fi0Nv at low Nv 

in Fig. 9. 

IV. DISCUSSION 

The large potential fluctuations which occur over 
most of the experimental range (w<4X1021/cm3; for 
brevity, we will refer to this as the low-n region) raise 
doubts about the validity of a literal interpretation of 
the parameters used to fit experimental results to the 
equations of conventional transport theory. Conse
quently, they should be regarded as an empirical decrip-
tion. The fact that this description works so well is of 
considerable interest, however, and suggests that the 
equations of the conventional theory contain elements 
of truth which go beyond the constraints of the model. 
One aspect of it, the fact that the contribution to the 
resistivity caused by increasing temperature is propor
tional to the absolute temperatures, seems readily under
standable since this has to do with the nature of 
the lattice vibrations rather than the nature of the 
electrons. On the other hand, one can understand now 
why p,T does not depend on n in the way required by 
the conventional theory. The fact that the Seebeck co
efficient varies as n~2/sT, and the fact that one can use 
Fermi-Dirac integrals based on this behavior (m*/m= 3, 
R=0) to account for deviations from degenerate statis
tics in the transport is not readily anticipated. Investi
gation of the theory for transport of electrons in crystals 
with large potential fluctuations is needed for an evalua
tion of the significance of these observations. 

In the limit of low-vacancy concentration (high-n 
region), one should be able to make use of conventional 
transport theory for a literal interpretation of our re
sults. It has been shown that the magnitude of the low-
temperature mobility juo can be accounted for, at least 
roughly, by the large distance required to screen the 
charge of the vacancies. We next reconsider the question 
of the appropriate value for the effective mass. 

In Ref. 7, a value of tn*=3.1ni was tentatively de
duced from the fact that S/n2/3 was constant over a 
wide range of n. We now see that Eq. (4) cannot be 

applied literally in the low-^ region, where conventional 
theory would normally be applied most safely to deduc
tions about the density-of-states effective mass. Now, 
if one is restricted to considering S in the high-n range, 
with ^>4X1021/cm3, there is greater ambiguity in a 
deduction of the effective mass. For one thing, the pos
sible effects of distortions of the Fermi surface create 
more uncertainty in interpretation. In Ref. 7, experi
mental results for Hall measurements were reported 
with the results Rnne< 1 for large n. Although the inter
pretation of the behavior of Hall coefficient for this 
range may be affected by the complexity of the trans
port now brought to light, the conclusions about the 
behavior at large n still stand. Since Rune is significantly 
smaller than unity in the latter region, it seems likely 
that the Fermi surface has concave regions in addition 
to convex ones. 

If one wishes, nonetheless, to deduce a value of m* 
from S in the high-w range, there is greater uncertainty 
about the appropriate value for R in Eq. (4). The energy 
dependence for scattering by vacancies is not evident, 
although a hard-sphere model suggested by the results 
in Fig. 9 would still require that Xs be independent of 
energy, and R=0. On the other hand, the requirement 
that n<na/4r is not clearly met, so that it is not evident, 
according to Eq. (2), whether / < 1 , giving R=0, or 
/ = 1, giving R—2, or something in between. Of course, 
knowing the values of R for both the vacancy and lattice 
scattering, one would have to take an appropriately 
weighted average. The resistivity at room temperature 
contains about equal contributions from both types of 
scattering, and the values of S in Fig. 6 reflect essenti
ally this situation. Thus, all that can be said is that R 
lies between 0 and 2, so that Ktn*/m<3. 

Another indication of the value of tn*/in is obtained 
by comparing the mobility fir, due to lattice scattering 
with high n, with literature values for other substances, 
in the light of Eq. (2). When this is done, it is found that 
the use of m*lm—3 for Ce3S4 gives abnormally large 
values for fir, as compared with other conductors, in
cluding silver and III-V semiconductors. In making 
comparison with metals, we assume tha t /= 1, and that 
the product Ma262/C2 is the same for both substances. 
By taking into account the difference in n/?n*2, one 
obtains a scaled value for the mobility, which will be 
denoted as JUS. As determined by data for silver, JJLS is 
equal to 0.1 /xr- Since / < 1 for Ce3S4, and Ma2 cannot be 
far different for the two substances, one must account 
for the difference by the abnormally large value of the 
Debye temperature 0(~ 660°K) in cerium sulfide, an 
abnormally small coupling constant C (one-third the 
value for silver), or a value of m*/m=l. The value of 6 
predicted by Lindemann's rule (296°K), as well as the 
spectroscopic data of Kurnick and Meyer19 precludes 
the first explanation. The second alternative seems un
likely, so that there is support for the belief that ni*/rn 

19 S. W. Kurnick and C. Meyer, Phys. Chem. Solids (to be 
published). 
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is close to unity. In a similar manner, data for indium 
antimonide or other III-V semiconductors give values 
of ns smaller than that for Ce3S4 by a factor of 30 or 
more, if one assumes m^/m=3, but in better agreement 
with ni*/fn = 1. 

Other information relating to the estimated value of 
fn*/ni is provided by the data of Kurnick and Meyer 
for the free carrier optical absorption in cerium sulfide.19 

They deduce m*/m= 1.3. However, this is based on the 
use of conventional theory in a situation (w^4019/cm3) 
where its applicability is open to question. 

The low-temperature anomalies in S(T) and p(T) 
occur most strongly in the limit of small vacancy con
centration, so that the possible causes can be considered 
in the light of conventional theory for electron trans
port. Although there seems to be a correlation between 
the magnitude of the anomalies of S and p in their de
pendence on both n and T, this may not necessarily 
reflect a common mechanism since different mechanisms 
may be separately suppressed by an increasing vacancy 
concentration and may have similar characteristic 
ranges of temperature. Phonon drag at low tempera
tures is fairly common, and, as noted above, one ex
pects it to be suppressed by the presence of lattice 
imperfections. 

The resistivity anomaly is more interesting. The ap
pearance of the curves for p(T) suggests that an added 
scattering mechanism exists which increases in magni
tude with increasing temperature and which saturates 
at about 100°K. The value of Ap, which is defined as the 
difference between the extrapolated resistivity at 
T=10°JL and the measured value, decreases as n is 
decreased and Nv increases. This indicates that the 
mechanism causing the anomaly tends to disappear at 
large Nv (smaller n), since the mobility corresponding 
to it apparently increases by a large factor. 

There seem to be at least two possible mechanisms. 
One is that there are localized modes of lattice vibrations 
associated with the vacancies which have a relatively 
low characteristic temperature (^100°K). Localized 
lattice vibrations have recently been receiving attention 
as a cause of anomalies in thermal conductivity of insu
lators.20 We cannot say much about the hypothesis. It 
seems reasonable to expect that they would be more 
effective in adding to the scattering at low values of Nv, 
since there is a larger region between vacancies in which 
they can act. 

Another possible cause of the anomaly is scattering 
by random ^pin states of the (4/)1 electrons of the cerium 
ions. Guthrie and Appel have suggested that spin scat
tering plays a role in paramagnetic rare-earth sulfides.21 

It does not seem necessary to invoke spin scattering to 
explain the values of /xo and jur, since their magnitudes 
can be accounted for by the vacancies and lattice vibra-

20 J. A. Krumhansl, Bull. Am. Phys. Soc. 8, 207 (1963), paper 
GA4; M. Wagner, ibid, paper GA5; G. T. Walker, ibid, paper 
GA6. 

21 G. Guthrie and J. Appel, Bull. Am. Phys. Soc. 8, 224 (1963). 

tions. However, spin scattering may provide a reason
able explanation for the resistivity anomaly and may 
also contribute to the residual resistivity at the lowest 
temperatures. 

Spin scattering has been proposed by Kasuya22 as a 
mechanism for electrical resistivity, and the problem 
has been discussed by other authors.23-27 We will con
sider tentatively the general conclusions suggested by 
the p(T) curves, assuming that spin scattering is 
the cause. The break in p(T) for the samples with 
n> 5 X1021/cm3 suggests that r ^ l00°C may represent 
the occurence of an antiferromagnetic type of ordering.28 

The magnitude of Ap corresponds to a mobility of 16 
cm2/V sec arising from magnetic scattering, which is 
equivalent to a scattering cross section of about 10~16 cm2 

for Ce3+ ions. Since spin order may be incomplete at the 
lowest temperature, an upper limit to the effect of spin 
scattering is given by the extrapolated resistivity at 
T= 0, and the corresponding mobility is jua£=0.8 cm2/V 
sec. 

According to the theory given by De Gennes and 
Friedel, the scattering cross section is proportional to 
tn*S'(S'+l), where Sf is the spin quantum number.23 

However, a more accurate consideration of the spin 
transitions given by Brout and Suhl suggests that 
S'0S'+1) should be replaced by S'2 cos2(S-J), which is 
equal to 5*7/(7+1) or 5/28 for Ce3+.26 / is the total 
angular momentum. Smidt and Daane have shown that 
Ap is proportional to S2 cos2(S« J) for heavy rare-earth 
metals and alloys.27 Using the slope of their curve as an 
indication of the strength of spin scattering of the Ce3+ 

ions in cerium sulfide, with appropriate corrections for 
the different values of n and density of scattering cen
ters, we find that there is agreement with Ap if one takes 
m*/^=2.5 for cerium sulfide. This agrees fairly well 
with other information. Comparison with \xx gives poorer 
agreement* with fn*/m— 4. However, the validity of the 
comparisons is open to some question since the differ
ences arising from the different electronic band struc
tures introduce an unknown factor. The fact that Ap 
decreases with increasing Nv can be ascribed to the 
increasing lattice disorder which would inhibit spin 
ordering at low temperatures. 

If spin scattering occurs, some disorder can be ex
pected to remain and contribute to scattering at the 
lowest temperatures in the experimental range. Much 
of the residual spin scattering would be related to the 

22 T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 58 (1956). 
23 P. G. De Gennes and J. Friedel, Phys. Chem. Solids 4, 71 

(1958). 
24 B. R. Coles, Advan. Phys. 7, 40 (1958). 
25 G. S. Anderson and S. Legvold, Phys Rev. Letters 1, 322 

(1958). 
26 R. Brout and H. Suhl, Phys. Rev. Letters 2, 387 (1959). 
27 F. A. Smidt, Jr., and A. H. Daane, Phys. Chem. Solids 24, 

361 (1963). 
28 The possibility of ferromagnetic behavior at liquid-helium 

temperatures was eliminated by a rough check on the magnetic 
susceptibility. We are indebted to Dr. R. H. Hammond for pro
viding this information. 
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vacancy concentration, but some may not. The former 
part would add to the contribution of the electrostatic 
potential to the scattering cross section per vacancy. 
Residual random spin scattering not associated with va
cancies would provide a back ground contribution to the 
scattering which would cause Sv to apparently increase 
at small Nv, possibly accounting for the larger Sv at our 
smallest Nv. 

We cannot tell at present to what extent spin scat
tering might contribute to Sv calculated in the previous 
section. It could conceivably account for all of it, but 
we do not think that this is likely. In such a case, ixx 

would represent scattering by disordered spins; the fact 
that fxx is independent of Nv is consistent with this idea. 
However, one must suppose that the range of the dis
ordering influence of each vacancy is larger (^7.5 A), 
and the strength of scattering by Ce3+ ions compares 
more poorly with the data for the heavy rare-earth ions. 
In view of the large screening distance at the vacancies. 
it seems most likely that the electrostatic scattering ac
counts for at least a large part of the residual resistivity. 

It would be very desirable, of course, to establish 
whether magnetic scattering plays a role in the trans
port and to determine its importance in relation to other 
scattering mechanisms. Guthrie and Appel have sug
gested a study of an analogous nonparamagnetic com
pound, lanthanum sulfide, which would have no elec
trons in 4/" states.21 Other obvious possibilities are the 
study of the magnetic susceptibility or magnetoresis-
tance of cerium sulfide samples which have low concen
trations of vacancies. Magnetic susceptibility measure
ments would be a means for testing whether spin order
ing occurs, as is suggested by the p(T) curves. Mag-
netoresistance measurements may not only establish 
whether the resistivity can be reduced by aligning the 
spins in an external field, but could also provide a means 
for measuring their contributions relative to other scat
tering mechanisms. 

V. CONCLUSIONS 
A study of resistivity and Seebeck coefficient over a 

wide range of composition and temperature provides 

data which can be described in large measure by the 
formulas of transport theory for metallic conductors. 
An examination of the electrostatic fields caused by the 
vacancies shows that most of the electrons are in regions 
widely fluctuating potentials except in the limit of low-
vacancy concentrations. As a result, the transport equa
tions must be regarded largely as providing an empirical 
description over most of the range of composition. Con
siderations of the data for low-vacancy concentrations 
show that the effective mass ratio m^/m lies between 
1 and 3. Measurements below liquid-air temperatures 
show anomalies, both in the Seebeck coefficient and in 
the resistivity, which occur most strongly at low-va
cancy concentrations. The former is typical of phonon 
drag effects. The latter may be caused by spin scatter
ing, but other possible causes such as scattering by 
localized modes of lattice vibrations are not excluded. 
The large residual resistivity at liquid-helium tempera
tures can be accounted for by scattering by vacancies, 
since there is weak screening, and one can expect a large 
scattering cross section. However, spin scattering could 
account for part of the residual resistivity and possibly 
a large fraction of it. 

The physical situation in cerium sulfide is an interest
ing one, and one for which there is no adequate theory 
of transport. The wide fluctuations in potential seem 
to present an extreme case of the type of situation which 
occurs in single-phase metallic alloys. Our original view 
was that one could study cerium sulfide to determine 
what happens in a metal when the conduction band is 
gradually emptied. It is apparent now that one cannot 
empty the band without at the same time destroying 
it by the introduction of point defects which have poorly 
screened effective charges. Thus, it is similar to typical 
metals, except that the perfect lattice has a much lower 
density of electrons, with a consequently large screen
ing distance, and one can go all the way in the same 
phase to a zero density of electrons. 
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